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One problem from Kleppner/Kolenkow’s Introduction to Mechanics textbook has a solution that
seems to violate conservation of energy. Solutions found online don’t offer much explanation — most
state that “inelastic processes don’t conserve energy” or similar. This explanation is unsatisfying, as
there is no apparent physical mechanism in the problem that could account for the energy dissipation.
This paper explores this problem in greater detail, using a 2D and 3D model for the rope. We find
two relevant, non-negligible (not obvious) results: 1. that the table can provide an impulse to the
rope without giving it any mechanical energy, and 2. that the rope can pick up a non-negligible
rotational kinetic energy.

I. INTRODUCTION

The problem of interest is problem 5.19 from Klepp-
ner and Kolenkow’s Introduction to Mechanics, 2nd
Edition [1]. (In the first edition, it is problem 4.19
— the wording is identical except for trivial modifica-
tions.) This problem appears at the end of a chapter
on work/energy/power, which follows the chapter
on momentum. It is one of the more difficult prob-
lems seen by students in a lower-division mechanics class:

5.19 Coil of rope
A uniform rope of mass density λ per unit length is coiled
on a smooth horizontal table. One end is pulled straight
up with constant speed v0, as shown.

(a) Find the force exerted on the end of the rope as a
function of height y.
(b) Compare the power delivered to the rope with the
rate of change of the rope’s total mechanical energy.

The solution to part (a) has two terms in the answer:

Fapp = F1 + F2 = λyg + λv20 (1)

Fapp is the magnitude of this upwards force. The force
F1 is that required to support the weight of rope already
off the ground. This section of rope is traveling at
constant velocity v0 upwards, and has no net force on
it. The force F2 is that required to accelerate a length

of rope ∆x (of mass ∆m = λ∆x) from rest to a final
velocity v0 upwards, in a time ∆t, where v0 = ∆x/∆t.
Although a student could produce F2 by assuming a
constant average acceleration and using Newton’s 2nd
law (with Fnet = (∆m)a), it is more straightforward to
use the impulse-momentum theorem. Note the force
required to support the weight of ∆m is infinitesimal in
the ∆t→ 0 limit, and is not included in either F1 or F2.

The solution to part (b) has two parts: first, the power
delivered to the rope directly from the applied force,

Papp = ~Fapp · ~v = Fappv0 = λygv0 + λv30 , (2)

and second, the time rate of change of the rope’s total
mechanical energy: dEmech/dt. To find the latter, we
first write Emech(t) with time-dependence made explicit.
Note y(t) = v0t, and let m(t) = λy(t) be the mass of rope
above the ground at time t:

Emech = Ug, CM +K

= m(t)g

(
1

2
y(t)

)
+

1

2
m(t)v20

=
1

2
λv20gt

2 +
1

2
λv30t

(3)

dEmech

dt
= λv20gt+

1

2
λv30

= λygv0 +
1

2
λv30 .

(4)

The interesting result is that the power put into the
system by the applied force, Papp, is greater than the
time rate of change of the mechanical energy of the sys-
tem. While non-conservation of mechanical energy is not
unheard of in introductory mechanics problems (e.g., all
inelastic collisions), the system here is relatively simple,
and usually for problems of this sort the mechanism by
which energy could be lost is clear. For example, the
problem right before this one (5.18 Sand and Conveyor
Belt in the 2nd edition) has a similar discrepancy, but
the difference can be accounted for with the standard
model of friction covered in introductory classes. For our
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coil of rope problem, however, it is not apparent that
friction can explain what is going on. It is the purpose
of this letter to study where this “missing” energy goes.

In studying the answer to this question using different
models of the problem, we uncover some unexpected
results. For example, under a straightforward 2D
model of chain links rotating to a vertical position
upon “launch” of ∆m, we learn that the force F2 can
be significantly different from either λv30 (that seen
in Eq. (2)) or half of this value (that required to be
consistent with Eq. (4)). The exact value of F2 is highly
sensitive to the parameters of the model, but we learn
that the table/ground plays an important role in the
solution, since it is able to provide an impulse to the
rope without providing any energy. Afterwards, we’ll
turn our attention to a 3D model of the coil unwinding
on the table. In Sec. III we find there is a non-negligible
“rotational energy,” even in the limit that the radius of
the coil goes to zero. Incorporating the fact that the
impulse from the ground can provide some force without
adding to the mechanical energy of the system, we’ll see
that, under some simplifying assumptions, the actual
value of F2 is 2

3λv
3
0 .

The discrepancy is related to the term F2 and not
F1. This term contains no reference to the acceleration
due to gravity, g, and so we can eliminate some possible
explanations for the discrepancy. This also helps us
simplify the analysis — we ignore gravitational force in
the following section, Sec. II. Also, note that the term
F2 = λv20 is constant (as is its contribution to the power
provided); we will continue taking F2 constant in this
paper.

II. 2D MODEL: CHAIN OF RODS

The first model we will study is a rope consisting of
several tiny, rigid chain links (“rods”). The rod being
lifted is subject to a constant vertical force F2 at one end
and pivoted at the other end. The constraint that the
rod not go into the table requires a normal force which is
proportional to F2 and (at least initially) upwards. This
realization already tells us that we will have to modify
our expression for F2: the normal force will provide an
upwards impulse to the rod, but will not provide any
mechanical energy to the rod. This is in contrast to the
solution in Sec. I, whereby F2 was entirely responsible
for the net impulse and the net energy delivered to
the rope. It seems likely, then, that F2 is actually not
as big as previously thought, and Eq. (2) will be modified.

Ideally we would just include the single force F2 in
the model. However, pulling upwards on one end of
the rod (to the right of the point of percussion, `/3
from the right end of the rod) would normally cause

θ

F2 (const.)

h(θ)

N(θ)

Fixed Pivot

m, `

the left end of the rod to initially move downwards.
There is therefore a normal force N(θ) from the table,
initially pointing upwards to enforce the constraint that
the left end of the rod not move down into the table.
In addition, we assume there is a leftwards horizontal
force of constraint h(θ) keeping the pivot fixed — this
horizontal constraint force could from from friction (at
least initially1) or from the next chain link.

In this section we’ll use m for this chain link / rod
(rather than the ∆m introduced in the last section),
and we’ll use ` for the length of the rod (rather than
∆x or ∆y). The rotational analog of Newton’s 2nd law
(with the left end of the rod taken as the pivot), the
impulse-momentum theorem (or, equivalently, Newton’s
2nd law), conservation of energy, and the constraint that
the left end of the rod remains fixed give the following
four equations:

~τ F2` cos θ = Iα =

(
1

3
m`2

)
θ̈ (5)

~p
dvCM, y

dt
=

1

m

(
F2 +N(θ)

)
(6)

E F2` sin θ =
1

2
Iω2 =

1

6
m`2ω2 (7)

constraint vCM = ω
`

2
(8)

The +y-direction is taken to be vertically upwards
for Eq. (6). Eq. (5) can also be found by taking the
time-derivative of Eq. (7), so this is a set of three
independent equations. The dependence of the normal
force on θ is explicitly shown in order to contrast with
the constant F2. Of course, ω = θ̇ and θ̈ both depend on
θ (or time) as well.

We could like to solve for N(θ). Take Eq. (8) (with
vCM, y = vCM cos θ) and find the time derivative to obtain

vCM, y

dt
=
`

2

[
θ̈ cos θ − ω2 sin θ

]
(9)

If we use Eq. (6) to substitute for the left-hand side, and

1 This statement comes from the fact that N(θ) decreases as angle
increases, while h(θ) increases as angle increases (both approxi-
mately linearly for small angles). When h(θ)/N(θ) > µs, static
friction alone cannot be the sole source of h(θ).
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Eq. (5) to substitute for θ̈ in the right-hand side, we get

1

m

[
F2 +N(θ)

]
=
`

2

[
3F2

m`
cos2 θ − ω2 sin θ

]
(10)

Plugging in ω2 = 6F2 sin θ/(m`) from Eq. (7), we can
solve for N(θ) to obtain

N(θ) = F2

[
1

2
− 9

2
sin2 θ

]
(11)

The normal force required to enforce the constraint de-
creases from N(0) = 1

2F2 at θ = 0◦ to N(θc) = 0 at

θ = θc ≡ sin−1 (1/3) ≈ 19.5◦ (and becomes negative for
larger angles):

The rod lifts off the ground early enough that the nor-
mal force does not seem to play a major role in the total
impulse delivered to the rod. Quantitatively, we can cal-
culate this (upwards) impulse delivered to the rod from
the normal force during the interval for which N(θ) ≥ 0,
and compare it to the (upwards) impulse from F2 during
the same interval:

JN =

∫
Ndt =

∫ θc

0

N(θ)

ω
dθ ≈ 0.190

√
F2`m

JF2
=

∫
F2 dt = F2

∫ θc

0

dθ

ω
≈ 0.477

√
F2`m

(12)

To resolve the discrepancy in the original problem,
these impulses need to be equal. Not only is this not
true here, but this is compounded by two facts: 1. the
applied force F2 continues past this angle, as the link is
still accelerating upwards, and 2. the normal force could
become effectively negative for angles above θc, since the
neighboring link could pull downwards on the rod (and,
in turn, the upwards normal force on the neighboring
link would decrease by the same amount, assuming that
neighboring link stays on the table).

All this is to say that we will need a more complicated
model to better understand what is going on in terms of

impulse and energy. It is unreasonable to expect that
the pivot will stay fixed for angles much larger than θc.
It appears likely that, in this model, the extra energy
will go towards internal motion of the rods (i.e., different
modes of oscillation, moving transverse to the upwards
motion of the center-of-mass). If a suitable theoretical
model is untenable, we could use a simulation to gain
some traction, at least numerically.

III. 3D MODEL: COIL OF ROPE

We now turn our attention towards a model that more
directly corresponds to the problem from the textbook.
We’ll take the coil of rope to have radius R (which we
take to zero at the end of the computation), and we will
use cylindrical coordinates (r, φ, z) with the rope lying in
the xy-plane concentric with the origin (i.e., we switch
from “y” to “z”). We approximate the portion of rope
that has been lifted to be a straight line:

φ

z r

(
r(u, t), φ(u, t), z(u, t)

)
v0t

u

We will parameterize the rope with u, the length along
the rope from the top (where the applied force is pulling
the rope upwards). With this parameterization, z(u, t),
r(u, t), and φ(u, t) are as follows:

v0t− z
u

=
v0t√

v20t
2 +R2

=⇒ z(u, t) = v0t−
v0tu√

v20t
2 +R2

(13)

Keep in mind that, even though the top of the rope is at
z-coordinate v0t, the z(u, t) above is describing any point
on the straight-line segment of rope (a distance u from
the top). Like z(u, t), r(u, t) can be found by exploiting
similar triangles:

r

u
=

R√
v20t

2 +R2
=⇒ r(u, t) =

Ru√
v20t

2 +R2
(14)

We can find φ(u, t) by utilizing the fact that the arclength
subtended so far on the table is equal to the total length
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of rope lifted off the table2:

φR =
√
v20t

2 +R2 −R =⇒ φ(u, t) =

√
1 +

v20t
2

R2
− 1

(15)

A. Total Mechanical Energy

In this subsection we find the total gravitational
potential energy (Ug(t)) and the total kinetic energy
(K(t)) of the rope as a function of time. We will look at
forces in the next subsection.

First, we’ll look at the total gravitational potential en-
ergy at a given time t by integrating over the segment
of rope above the table. Note dm = λdu and the length
of rope above the ground (the maximum value of u) is

L(t) =
√
v20t

2 +R2:

Ug(t) =

∫
rope

gz dm

=

∫ L(t)

0

gv0t

(
1− u

L(t)

)
λ du

= gv0tλ
L(t)

2
=

1

2
gv0tλ

√
v20t

2 +R2

lim
R→0

Ug(t) =
1

2
gv20t

2λ X

(16)

This is the answer that we expected from our original
solution. This is not too surprising, as the discrepancy
is in F2 and not F1.

Next, we’ll look at the total kinetic energy at a given
time t via a similar integration:

K(t) =

∫
rope

1

2

(
~v · ~v

)
dm

=

∫ L(t)

0

1

2

(
ż2 + ṙ2 + r2φ̇2

)
λ du

(17)

We’ll look at these pieces term-by-term, where K(t) =
Kz(t) +Kr(t) +Kφ(t) are the three terms that appear in
Eq. (17), above. We’ll need the following time-derivatives

2 Whether or not we subtract out the R in this total length of rope
is not so important, as our discussion really only depends on φ̇.

of the variables:

ż = v0 −
R2

L3
v0u

ṙ = −Ru
L3

v20t

φ̇ =
v20t

RL

(18)

t is a constant parameter in the integral over u; the dot
over the coordinate really signifies a partial derivative
with repsect to time holding u constant (which will then
be used in the integral over u).

Kinetic Energy term 1, Kz(t):

Kz(t) =
λ

2

∫ L

0

(
v0 −

R2

L3
v0u

)2

du

=
1

2
λv20L

(
1− R2

L2
+

1

3

R4

L4

)
lim
R→0

Kz(t) =
1

2
λv30t X

(19)

Note that the limit of R/L = R/
√
v20t

2 +R2 is zero in
the R → 0 limit. The checkmark signifies that this is
our expected result for the total kinetic energy of the
rope, as we saw in Eq. (3).

Kinetic Energy term 2, Kr(t):

Kr(t) =
λ

2

∫ L

0

ṙ2 du

=
λ

6

R2v40t
2

L3

lim
R→0

Kr(t) = 0 X

(20)

The checkmark signifies that there is no additional
kinetic energy term here (i.e., no corrections to our
original answer).

Kinetic Energy term 3, Kφ(t):

Kφ(t) =
λ

2

∫ L

0

v40t
2

L4
u2 du

=
λ

6

v40t
2

L

lim
R→0

Kφ(t) =
1

6
λv30t 6= 0 (!?)

(21)

This is nonzero, which is surprising. Even in the R → 0
limit, there is some nonzero kinetic energy associated
with the rotational motion. Of course, this is a new
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result, not seen in the 2D model.

The total kinetic energy in the R→ 0 limit is then

lim
R→0

K(t) =
2

3
λv30t (!) (22)

B. Total Force

To find the net force on the rope (that is, the portion
of the rope that is in the air), we first find an expression
for ~ptot and then differentiate with respect to time:

~ptot =

∫
rope

~v dm = λ

∫ L(t)

0

~v du (23)

where ~v = żẑ + rφ̇φ̂+ ṙr̂. These three components eval-
uate to

ptot, z = v0λL

(
1− R2

2L2

)
ptot,φ =

1

2
λv20t

ptot, r = −1

2
λ

(
R

L

)
v20t

(24)

Taking a derivative with respect to time, and taking
the R → 0 limit, we find that the net force on the rope
as a function of time is

~Fnet on rope =
d~ptot
dt

=
(
λv20

)
ẑ +

(
1

2
λv20

)
φ̂ (25)

This net force is the sum of three contributions: a con-
stant upwards applied force at the top of the rope (which
we have been calling F2 in magnitude), the force from the
ground/table (and possibly the other parts of the rope),
and the gravitational force:

~Fnet on rope = ~Fapp + ~Fground + ~Fg

Fnet, z = Fapp, z + Fground, z − λzg
(26)

If the applied force satisfies Fapp, z = 2
3λv

2
0 + λzg, and if

ground/table has normal component Fground, z = 1
3λv

2
0 ,

then there is no longer any discrepancy. Interestingly,
this normal force of magnitude half the applied force (ig-
noring the gravitational piece) is the same situation we

encountered in Sec. II, so long as the rod was horizontal.
Therefore, there is no discrepancy so long as it is a good
approximation that the effective fulcrum for the piece of
rope rising off the table is far enough away that the sec-
tion lifting off the ground is very nearly horizontal. In
that case, we have an applied power of

Papp =
dEmech

dt
= λzgv0 +

2

3
λv30 (27)

The force from the ground/table makes up the remaining
impulse delivered to the rope. This force has both z and
φ components.

If, however, the ground/table is unable to provide this
impulse, then the applied force must make up the differ-
ence, and there will be a greater applied power than the
time rate-of-change of the rope’s mechanical energy. Pre-
sumably, the “loss” of energy goes into internal energy
of the rope (swinging side-to-side in addition to moving
upwards).

IV. CONCLUSIONS

We explored a problem/solution from Klepp-
ner/Kolenkow’s Introduction to Mechanics textbook
(5.19 Coil of rope). While the standard solution has
an apparent paradox (or, an implied loss of mechanical
energy to dissipative forces), where the applied power
is greater than the rate-of-change of the system’s me-
chanical energy, we give two other explanations for what
happens:

1. Because the table can provide an impulse to the
rope without supplying any energy, the applied
power is not as great, and there is a reduced dis-
crepancy between applied power and the rate at
which mechanical energy is supplied to the rope.

2. Because the rope “unwinds” as it is lifted, it can
have some rotational motion — the azimuthal com-
ponent of this motion has a non-negligible kinetic
energy associated with it.

(Combining the two above effects:) As compared to
the usual answer, the applied force is smaller and the
system’s mechanical energy is larger, and there is not
necessarily any energy dissipation.

[1] D Kleppner and R Kolenkow. An introduction to mechan-
ics. 2013.


