

Now & Summer

* Think about 3 LOR writers

- @ Ceast one regearch

Fall Senior year

- list jud schools & ask about letters

- Apps due Dec1- Dec. 31

	Questions	about	pre-diag	nostic	
3.	When it is about the same as is Jupiter, a spacecraft planets has a speed that is Jupiter in its orbit. Which the orbit of the spacecraft (A) Spiral	on a mission t s 1.5 times the n of the following	o the outer speed of ng describes	- k+	U= Ext
((B) Circle (C) Ellipse (D) Parabola (E) Hyperbola		, B	feund"	$U = E_{tot}$ $E_{tot} < 0$
	n a + poto			υ	icial Thm.
*	* Ent <0				(K) = -5<0

* FH =0: Parabola

(A) 0, $\hbar\omega$, $2\hbar\omega$, ...

(B)
$$0, \frac{\hbar\omega}{2}, \hbar\omega, \ldots$$

(C)
$$\frac{\hbar\omega}{2}$$
, $\frac{3\hbar\omega}{2}$, $\frac{5\hbar\omega}{2}$, ...

(D)
$$\frac{3\hbar\omega}{2}$$
, $\frac{7\hbar\omega}{2}$, $\frac{11\hbar\omega}{2}$, ...

(E)
$$0, \frac{3\hbar\omega}{2}, \frac{5\hbar\omega}{2}, \ldots$$

En = tw[n+5]

Lagrangions & Hamiltonians

for our ex., x and x

$$\frac{\partial L}{\partial x} = g[M_0 - M_1]$$

$$\frac{d}{dt} \left[\frac{\partial L}{\partial \dot{x}} \right] = \frac{d}{dt} \left[\left(M_1 t M_2 \right) \dot{x} \right] = \left(M_1 t M_2 \right) \dot{x}$$

$$H = \frac{8}{5}$$

$$H = \frac{\partial}{\partial h}$$

$$\frac{\partial H}{\partial h} = \frac{\partial h}{\partial h} = V$$

$$\frac{\partial H}{\partial h} = \frac{\partial h}{\partial h} = V$$

$$H = K + U$$
 Hamiltonian
$$P = \frac{\partial L}{\partial \dot{\gamma}}$$