Lab Methods

Log Plots

- straight line on log-log plots corresponds to power law: Y = axb

- straight line on log plots (logarithmic y-axis & linear x-axis)

corresponds to an exponential growth law: $y = C \cdot A^{Bx}$

-straight line on log-linear plots (linear y-axis & logarithmic x-axis) corresponds to logarithmic growth: Y=Clog(bx)

Statistics - Variance: $\overline{\sigma_s^2} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 \quad OR \quad \overline{\sigma_s^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$ sample variance population ("true") variance - Error: $-\sigma_{tot} = \sigma_{stat}^2 + \sigma_{sus}^2$ - Error propagation: For $z(x_1, x_2, ..., x_n)$, $\sigma_z^2 = \sum_{i=1}^n \left(\frac{\partial z}{\partial x_i}\right)^2 \sigma_{x_i}^2$ (probably won't need) - Special cases: J= avx $z = \alpha x$ $\sigma_z = \sqrt{\sigma_x^2 + \sigma_y^2}$ Z= X±Y Z = xy or Z = $\frac{x}{y}$ $\frac{\sigma_z}{z} = \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2}$ - Weighted averages (e.g. between $x \pm \sigma_x \in Y \pm \sigma_y$): $\chi = \frac{\frac{x}{\sigma_{x^{2}}} + \frac{y}{\sigma_{y^{1}}}}{\frac{1}{\sigma_{y^{1}}} + \frac{1}{\sigma_{y^{2}}}} \quad \xi \quad \sigma_{\text{tot}}^{2} = \frac{1}{\frac{1}{\sigma_{x^{2}}} + \frac{1}{\sigma_{y^{2}}}}$

2. Event A is drawn from a Gaussian probability distribution with standard deviation σ_A , and event B is drawn from a Gaussian with standard deviation σ_B . If A and B are independent events, the probability distribution for the sum of A and B is a Gaussian with standard deviation

Recall:
$$z = x \pm y$$
 $\sigma_z = \sqrt{\sigma_x^2 + \sigma_y^2}$

(A) $\sigma_A + \sigma_B$ (B) $\sqrt{\sigma_A \sigma_B}$ (C) $\sqrt{\sigma_A^2 + \sigma_B^2}$ (D) $\frac{1}{1/\sigma_A + 1/\sigma_B}$ (E) none of these

Distributions

- 3. Which of the following probability distributions best describes the probability of obtaining heads 3 times when a fair coin is flipped 10 times?
 - (A) Binomial distribution
 - (B) Gaussian distribution
 - (C) Student's t distribution
 - (D) Log-normal distribution
 - (E) χ^2 distribution

- Binomial distribution: probability of obtaining n successes in a fixed number of trials w/ a binary outcome
 - Gaussian distribution a good approximation when the Success probability is close to 50% ξ the number of trials is large

Distributions

-Poisson distribution: probability of counting n events in a fixed time, where events occur randomly at a known constant rate

$$-P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$$
 where $\lambda = expected$ number of counts in a given time interval

$$- P(o) = e^{-\lambda}$$

- Time between Poisson events follows an exponential distribution

7. A student holding a Geiger counter near a radioactive sample hears five clicks in a 10-second time window. Based on this measurement, what is the probability of hearing exactly one click in a subsequent 10-second time window?

(A)
$$e^{-5}$$

(B) $5e^{-5}$
(C) $5e^{-2}$
(D) $\frac{5e^{-2}}{2}$
(E) 2^4e^{-5}
 $P(n) = \frac{\lambda^n e^{-\lambda}}{n!}$

7. A student holding a Geiger counter near a radioactive sample hears five clicks in a 10-second time window. Based on this measurement, what is the probability of hearing exactly one click in a subsequent 10-second time window?

(A) e^{-5} (B) $5e^{-5}$ (C) $5e^{-2}$ (D) $\frac{5e^{-2}}{2}$ (E) 2^4e^{-5}

$$D(n) = \frac{\lambda^{n} e^{-\lambda}}{n!}$$

Expected value in 10s window: $\lambda = 5$ What is P(n=1)?

$$P(n) = \frac{\lambda^{n} e^{-\lambda}}{n!}$$

$$G(n=1, \lambda=5) = \frac{5' e^{-5}}{1!} = 5 e^{-5}$$