1. “Stop to Think 17.1” on pg. 457. As always, provide some justification for your answer (don’t just put a single letter – you won’t receive full credit if you do).

2. Suppose you have a string of length L clamped down on both sides. Is it possible for the wavelength of a standing wave on this string to equal $L/3$? If yes, then draw a picture and give the value of m (like in Figure 17.9 on page 461). If this situation is not possible, explain why not, with both a picture as well as some words explaining the picture.

3. Read example 17.2 (on page 461). If this experiment were done on the moon (with the same string and the same masses $M = 2.00 \text{ kg}, 4.00 \text{ kg}, \text{ etc.}$), would the values of f_3 in the table be bigger than or smaller than the values recorded on earth? Explain (you’ll probably want to reason with some equations).

You don’t have to do this, but try to find the values of f_3 that the experimenter would get on the moon (answer will be provided in solutions to this reading assignment).

[not due; for extra practice]. All problems from Chapter 17 of the 4th edition of Knight:

Exercises: 3-13.